Iterative Concave Rank Approximation for Recovering Low-Rank Matrices
نویسندگان
چکیده
منابع مشابه
Non-iterative generalized low rank approximation of matrices
As an extension to 2DPCA, Generalized Low Rank Approximation of Matrices (GLRAM) applies two-sided (i.e., the left and right) rather than single-sided (i.e., the left or the right alone) linear projecting transform(s) to each 2D image for compression and feature extraction. Its advantages over 2DPCA include higher compression ratio and superior classification performance etc. However, GLRAM can...
متن کاملIterative Low-Rank Approximation for CNN Compression
Deep convolutional neural networks contain tens of millions of parameters, making them impossible to work efficiently on embedded devices. We propose iterative approach of applying low-rank approximation to compress deep convolutional neural networks. Since classification and object detection are the most favored tasks for embedded devices, we demonstrate the effectiveness of our approach by co...
متن کاملSpaRCS: Recovering low-rank and sparse matrices from compressive measurements
We consider the problem of recovering a matrix M that is the sum of a low-rank matrix L and a sparse matrix S from a small set of linear measurements of the form y = A(M) = A(L + S). This model subsumes three important classes of signal recovery problems: compressive sensing, affine rank minimization, and robust principal component analysis. We propose a natural optimization problem for signal ...
متن کاملRandomized algorithms for the low-rank approximation of matrices.
We describe two recently proposed randomized algorithms for the construction of low-rank approximations to matrices, and demonstrate their application (inter alia) to the evaluation of the singular value decompositions of numerically low-rank matrices. Being probabilistic, the schemes described here have a finite probability of failure; in most cases, this probability is rather negligible (10(-...
متن کاملLow-rank Tensor Approximation
Approximating a tensor by another of lower rank is in general an ill posed problem. Yet, this kind of approximation is mandatory in the presence of measurement errors or noise. We show how tools recently developed in compressed sensing can be used to solve this problem. More precisely, a minimal angle between the columns of loading matrices allows to restore both existence and uniqueness of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2014
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2014.2340820